Skip to content

Summary

Summary facilitates performing a summary of statisics of time series data, typically filtered by a Tag Name or Device Name and an event time.

Prerequisites

Ensure you have installed the RTDIP SDK as specified in the Getting Started section.

This example is using DefaultAuth() and DatabricksSQLConnection() to authenticate and connect. You can find other ways to authenticate here. The alternative built in connection methods are either by PYODBCSQLConnection(), TURBODBCSQLConnection() or SparkConnection().

Parameters

Name Type Description
tag_names list List of tagname or tagnames ["tag_1", "tag_2"]
start_date str Start date (Either a date in the format YY-MM-DD or a datetime in the format YYY-MM-DDTHH:MM:SS or specify the timezone offset in the format YYYY-MM-DDTHH:MM:SS+zz:zz)
end_date str End date (Either a date in the format YY-MM-DD or a datetime in the format YYY-MM-DDTHH:MM:SS or specify the timezone offset in the format YYYY-MM-DDTHH:MM:SS+zz:zz)
include_bad_data bool Include "Bad" data points with True or remove "Bad" data points with False

Example

from rtdip_sdk.authentication.azure import DefaultAuth
from rtdip_sdk.connectors import DatabricksSQLConnection
from rtdip_sdk.queries import TimeSeriesQueryBuilder

auth = DefaultAuth().authenticate()
token = auth.get_token("2ff814a6-3304-4ab8-85cb-cd0e6f879c1d/.default").token
connection = DatabricksSQLConnection("{server_hostname}", "{http_path}", token)

data = (
    TimeSeriesQueryBuilder()
    .connect(connection)
    .source("{tablename_or_path}")
    .summary(
        tagname_filter=["{tag_name_1}", "{tag_name_2}"],
        start_date="2023-01-01",
        end_date="2023-01-31",
    )
)

print(data)