Skip to content

Convert Fledge Json to Process Control Data Model

FledgeOPCUAJsonToPCDMTransformer

Bases: TransformerInterface

Converts a Spark Dataframe column containing a json string created by Fledge to the Process Control Data Model.

Example

from rtdip_sdk.pipelines.transformers import FledgeOPCUAJsonToPCDMTransformer

fledge_opcua_json_to_pcdm_transfromer = FledgeOPCUAJsonToPCDMTransformer(
    data=df,
    souce_column_name="body",
    status_null_value="Good",
    change_type_value="insert",
    timestamp_formats=[
        "yyyy-MM-dd'T'HH:mm:ss.SSSX",
        "yyyy-MM-dd'T'HH:mm:ssX",
    ]
)

result = fledge_opcua_json_to_pcdm_transfromer.transform()

Parameters:

Name Type Description Default
data DataFrame

Dataframe containing the column with Json Fledge data

required
source_column_name str

Spark Dataframe column containing the OPC Publisher Json OPC UA data

required
status_null_value str

If populated, will replace 'Good' in the Status column with the specified value.

'Good'
change_type_value optional str

If populated, will replace 'insert' in the ChangeType column with the specified value.

'insert'
timestamp_formats list[str]

Specifies the timestamp formats to be used for converting the timestamp string to a Timestamp Type. For more information on formats, refer to this documentation.

["yyyy-MM-dd'T'HH:mm:ss.SSSX", "yyyy-MM-dd'T'HH:mm:ssX"]
Source code in src/sdk/python/rtdip_sdk/pipelines/transformers/spark/fledge_opcua_json_to_pcdm.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
class FledgeOPCUAJsonToPCDMTransformer(TransformerInterface):
    """
    Converts a Spark Dataframe column containing a json string created by Fledge to the Process Control Data Model.

    Example
    --------
    ```python
    from rtdip_sdk.pipelines.transformers import FledgeOPCUAJsonToPCDMTransformer

    fledge_opcua_json_to_pcdm_transfromer = FledgeOPCUAJsonToPCDMTransformer(
        data=df,
        souce_column_name="body",
        status_null_value="Good",
        change_type_value="insert",
        timestamp_formats=[
            "yyyy-MM-dd'T'HH:mm:ss.SSSX",
            "yyyy-MM-dd'T'HH:mm:ssX",
        ]
    )

    result = fledge_opcua_json_to_pcdm_transfromer.transform()
    ```

    Parameters:
        data (DataFrame): Dataframe containing the column with Json Fledge data
        source_column_name (str): Spark Dataframe column containing the OPC Publisher Json OPC UA data
        status_null_value (str): If populated, will replace 'Good' in the Status column with the specified value.
        change_type_value (optional str): If populated, will replace 'insert' in the ChangeType column with the specified value.
        timestamp_formats (list[str]): Specifies the timestamp formats to be used for converting the timestamp string to a Timestamp Type. For more information on formats, refer to this [documentation.](https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html)
    """

    data: DataFrame
    source_column_name: str
    status_null_value: str
    change_type_value: str
    timestamp_formats: list

    def __init__(
        self,
        data: DataFrame,
        source_column_name: str,
        status_null_value: str = "Good",
        change_type_value: str = "insert",
        timestamp_formats: list = [
            "yyyy-MM-dd'T'HH:mm:ss.SSSX",
            "yyyy-MM-dd'T'HH:mm:ssX",
        ],
    ) -> None:  # NOSONAR
        self.data = data
        self.source_column_name = source_column_name
        self.status_null_value = status_null_value
        self.change_type_value = change_type_value
        self.timestamp_formats = timestamp_formats

    @staticmethod
    def system_type():
        """
        Attributes:
            SystemType (Environment): Requires PYSPARK
        """
        return SystemType.PYSPARK

    @staticmethod
    def libraries():
        libraries = Libraries()
        return libraries

    @staticmethod
    def settings() -> dict:
        return {}

    def pre_transform_validation(self):
        return True

    def post_transform_validation(self):
        return True

    def transform(self) -> DataFrame:
        """
        Returns:
            DataFrame: A dataframe with the specified column converted to PCDM
        """
        df = (
            self.data.withColumn(
                self.source_column_name,
                from_json(self.source_column_name, FLEDGE_SCHEMA),
            )
            .selectExpr("inline({})".format(self.source_column_name))
            .select(explode("readings"), "timestamp")
            .withColumn(
                "EventTime",
                coalesce(
                    *[to_timestamp(col("timestamp"), f) for f in self.timestamp_formats]
                ),
            )
            .withColumnRenamed("key", "TagName")
            .withColumnRenamed("value", "Value")
            .withColumn("Status", lit(self.status_null_value))
            .withColumn(
                "ValueType",
                when(col("value").cast("float").isNotNull(), "float").when(
                    col("value").cast("float").isNull(), "string"
                ),
            )
            .withColumn("ChangeType", lit(self.change_type_value))
        )

        return df.select(
            "TagName", "EventTime", "Status", "Value", "ValueType", "ChangeType"
        )

system_type() staticmethod

Attributes:

Name Type Description
SystemType Environment

Requires PYSPARK

Source code in src/sdk/python/rtdip_sdk/pipelines/transformers/spark/fledge_opcua_json_to_pcdm.py
85
86
87
88
89
90
91
@staticmethod
def system_type():
    """
    Attributes:
        SystemType (Environment): Requires PYSPARK
    """
    return SystemType.PYSPARK

transform()

Returns:

Name Type Description
DataFrame DataFrame

A dataframe with the specified column converted to PCDM

Source code in src/sdk/python/rtdip_sdk/pipelines/transformers/spark/fledge_opcua_json_to_pcdm.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def transform(self) -> DataFrame:
    """
    Returns:
        DataFrame: A dataframe with the specified column converted to PCDM
    """
    df = (
        self.data.withColumn(
            self.source_column_name,
            from_json(self.source_column_name, FLEDGE_SCHEMA),
        )
        .selectExpr("inline({})".format(self.source_column_name))
        .select(explode("readings"), "timestamp")
        .withColumn(
            "EventTime",
            coalesce(
                *[to_timestamp(col("timestamp"), f) for f in self.timestamp_formats]
            ),
        )
        .withColumnRenamed("key", "TagName")
        .withColumnRenamed("value", "Value")
        .withColumn("Status", lit(self.status_null_value))
        .withColumn(
            "ValueType",
            when(col("value").cast("float").isNotNull(), "float").when(
                col("value").cast("float").isNull(), "string"
            ),
        )
        .withColumn("ChangeType", lit(self.change_type_value))
    )

    return df.select(
        "TagName", "EventTime", "Status", "Value", "ValueType", "ChangeType"
    )