Bases: PJMDailyLoadISOSource
The PJM Historical Load ISO Source is used to read historical load data from PJM API.
To read more about the reports, visit the following URLs -
Actual doc: ops_sum_prev_period
Forecast doc: load_frcstd_7_day
Historical is the same PJM endpoint as Actual, but is called repeatedly within a range established by the
start_date & end_date attributes
Example
from rtdip_sdk.pipelines.sources import PJMHistoricalLoadISOSource
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
pjm_source = PJMHistoricalLoadISOSource(
spark=spark,
options={
"api_key": "{api_key}",
"start_date": "20230510",
"end_date": "20230520",
}
)
pjm_source.read_batch()
Parameters:
Name |
Type |
Description |
Default |
spark |
SparkSession
|
|
required
|
options |
dict
|
A dictionary of ISO Source specific configurations (See Attributes table below)
|
required
|
Attributes:
Name |
Type |
Description |
api_key |
str
|
Must be a valid key from PJM, see PJM documentation
|
start_date |
str
|
Must be in YYYY-MM-DD format.
|
end_date |
str
|
Must be in YYYY-MM-DD format.
|
query_batch_days |
int
|
(optional) Number of days must be < 160 as per PJM & is defaulted to 120
|
sleep_duration |
int
|
(optional) Number of seconds to sleep between request, defaulted to 5 seconds, used to manage requests to PJM endpoint
|
request_count |
int
|
(optional) Number of requests made to PJM endpoint before sleep_duration, currently defaulted to 1
|
Please check the BaseISOSource for available methods.
BaseISOSource
BaseISOSource
Bases: SourceInterface
Base class for all the ISO Sources. It provides common functionality and helps in reducing the code redundancy.
Parameters:
Name |
Type |
Description |
Default |
spark |
SparkSession
|
|
required
|
options |
dict
|
A dictionary of ISO Source specific configurations
|
required
|
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224 | class BaseISOSource(SourceInterface):
"""
Base class for all the ISO Sources. It provides common functionality and helps in reducing the code redundancy.
Parameters:
spark (SparkSession): Spark Session instance
options (dict): A dictionary of ISO Source specific configurations
"""
spark: SparkSession
options: dict
iso_url: str = "https://"
query_datetime_format: str = "%Y%m%d"
required_options: list = []
spark_schema = StructType([StructField("id", IntegerType(), True)])
default_query_timezone: str = "UTC"
def __init__(self, spark: SparkSession, options: dict) -> None:
self.spark = spark
self.options = options
self.query_timezone = pytz.timezone(
self.options.get("query_timezone", self.default_query_timezone)
)
self.current_date = datetime.now(timezone.utc).astimezone(self.query_timezone)
def _fetch_from_url(self, url_suffix: str) -> bytes:
"""
Gets data from external ISO API.
Args:
url_suffix: String to be used as suffix to iso url.
Returns:
Raw content of the data received.
"""
url = f"{self.iso_url}{url_suffix}"
logging.info(f"Requesting URL - {url}")
response = requests.get(url)
code = response.status_code
if code != 200:
raise HTTPError(
f"Unable to access URL `{url}`."
f" Received status code {code} with message {response.content}"
)
return response.content
def _get_localized_datetime(self, datetime_str: str) -> datetime:
"""
Converts string datetime into Python datetime object with configured format and timezone.
Args:
datetime_str: String to be converted into datetime.
Returns: Timezone aware datetime object.
"""
parsed_dt = datetime.strptime(datetime_str, self.query_datetime_format)
parsed_dt = parsed_dt.replace(tzinfo=self.query_timezone)
return parsed_dt
def _pull_data(self) -> pd.DataFrame:
"""
Hits the fetch_from_url method with certain parameters to get raw data from API.
All the children ISO classes must override this method and call the fetch_url method
in it.
Returns:
Raw DataFrame from API.
"""
return pd.read_csv(BytesIO(self._fetch_from_url("")))
def _prepare_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Performs all the basic transformations to prepare data for further processing.
All the children ISO classes must override this method.
Args:
df: Raw DataFrame, received from the API.
Returns:
Modified DataFrame, ready for basic use.
"""
return df
def _sanitize_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Another data transformation helper method to be called after prepare data.
Used for advance data processing such as cleaning, filtering, restructuring.
All the children ISO classes must override this method if there is any post-processing required.
Args:
df: Initial modified version of DataFrame, received after preparing the data.
Returns:
Final version of data after all the fixes and modifications.
"""
return df
def _get_data(self) -> pd.DataFrame:
"""
Entrypoint method to return the final version of DataFrame.
Returns:
Modified form of data for specific use case.
"""
df = self._pull_data()
df = self._prepare_data(df)
df = self._sanitize_data(df)
# Reorder columns to keep the data consistent
df = df[self.spark_schema.names]
return df
@staticmethod
def system_type():
return SystemType.PYSPARK
@staticmethod
def libraries():
libraries = Libraries()
return libraries
@staticmethod
def settings() -> dict:
return {}
def _validate_options(self) -> bool:
"""
Performs all the options checks. Raises exception in case of any invalid value.
Returns:
True if all checks are passed.
"""
return True
def pre_read_validation(self) -> bool:
"""
Ensures all the required options are provided and performs other validations.
Returns:
True if all checks are passed.
"""
for key in self.required_options:
if key not in self.options:
raise ValueError(f"Required option `{key}` is missing.")
return self._validate_options()
def post_read_validation(self) -> bool:
return True
def read_batch(self) -> DataFrame:
"""
Spark entrypoint, It executes the entire process of pulling, transforming & fixing data.
Returns:
Final Spark DataFrame converted from Pandas DataFrame post-execution.
"""
try:
self.pre_read_validation()
pdf = self._get_data()
pdf = _prepare_pandas_to_convert_to_spark(pdf)
# The below is to fix the compatibility issues between Pandas 2.0 and PySpark.
pd.DataFrame.iteritems = pd.DataFrame.items
df = self.spark.createDataFrame(data=pdf, schema=self.spark_schema)
return df
except Exception as e:
logging.exception(str(e))
raise e
def read_stream(self) -> DataFrame:
"""
By default, the streaming operation is not supported but child classes can override if ISO supports streaming.
Returns:
Final Spark DataFrame after all the processing.
"""
raise NotImplementedError(
f"{self.__class__.__name__} connector doesn't support stream operation."
)
|
pre_read_validation()
Ensures all the required options are provided and performs other validations.
Returns:
True if all checks are passed.
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
175
176
177
178
179
180
181
182
183
184
185
186 | def pre_read_validation(self) -> bool:
"""
Ensures all the required options are provided and performs other validations.
Returns:
True if all checks are passed.
"""
for key in self.required_options:
if key not in self.options:
raise ValueError(f"Required option `{key}` is missing.")
return self._validate_options()
|
read_batch()
Spark entrypoint, It executes the entire process of pulling, transforming & fixing data.
Returns:
Final Spark DataFrame converted from Pandas DataFrame post-execution.
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211 | def read_batch(self) -> DataFrame:
"""
Spark entrypoint, It executes the entire process of pulling, transforming & fixing data.
Returns:
Final Spark DataFrame converted from Pandas DataFrame post-execution.
"""
try:
self.pre_read_validation()
pdf = self._get_data()
pdf = _prepare_pandas_to_convert_to_spark(pdf)
# The below is to fix the compatibility issues between Pandas 2.0 and PySpark.
pd.DataFrame.iteritems = pd.DataFrame.items
df = self.spark.createDataFrame(data=pdf, schema=self.spark_schema)
return df
except Exception as e:
logging.exception(str(e))
raise e
|
read_stream()
By default, the streaming operation is not supported but child classes can override if ISO supports streaming.
Returns:
Type |
Description |
DataFrame
|
Final Spark DataFrame after all the processing.
|
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
213
214
215
216
217
218
219
220
221
222
223
224 | def read_stream(self) -> DataFrame:
"""
By default, the streaming operation is not supported but child classes can override if ISO supports streaming.
Returns:
Final Spark DataFrame after all the processing.
"""
raise NotImplementedError(
f"{self.__class__.__name__} connector doesn't support stream operation."
)
|
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/pjm_historical_load_iso.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197 | class PJMHistoricalLoadISOSource(PJMDailyLoadISOSource):
"""
The PJM Historical Load ISO Source is used to read historical load data from PJM API.
To read more about the reports, visit the following URLs -
<br>
Actual doc: [ops_sum_prev_period](https://dataminer2.pjm.com/feed/ops_sum_prev_period/definition)
<br>
Forecast doc: [load_frcstd_7_day](https://dataminer2.pjm.com/feed/load_frcstd_7_day/definition)
Historical is the same PJM endpoint as Actual, but is called repeatedly within a range established by the
start_date & end_date attributes
Example
--------
```python
from rtdip_sdk.pipelines.sources import PJMHistoricalLoadISOSource
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
pjm_source = PJMHistoricalLoadISOSource(
spark=spark,
options={
"api_key": "{api_key}",
"start_date": "20230510",
"end_date": "20230520",
}
)
pjm_source.read_batch()
```
Parameters:
spark (SparkSession): Spark Session instance
options (dict): A dictionary of ISO Source specific configurations (See Attributes table below)
Attributes:
api_key (str): Must be a valid key from PJM, see PJM documentation
start_date (str): Must be in `YYYY-MM-DD` format.
end_date (str): Must be in `YYYY-MM-DD` format.
query_batch_days (int): (optional) Number of days must be < 160 as per PJM & is defaulted to `120`
sleep_duration (int): (optional) Number of seconds to sleep between request, defaulted to `5` seconds, used to manage requests to PJM endpoint
request_count (int): (optional) Number of requests made to PJM endpoint before sleep_duration, currently defaulted to `1`
Please check the BaseISOSource for available methods.
BaseISOSource:
::: src.sdk.python.rtdip_sdk.pipelines.sources.spark.iso.base_iso"""
spark: SparkSession
options: dict
required_options = ["api_key", "start_date", "end_date"]
def __init__(self, spark: SparkSession, options: dict) -> None:
super().__init__(spark, options)
self.spark: SparkSession = spark
self.options: dict = options
self.api_key: str = self.options.get("api_key", "").strip()
self.start_date: str = self.options.get("start_date", "")
self.end_date: str = self.options.get("end_date", "")
self.query_batch_days: int = self.options.get("query_batch_days", 120)
self.sleep_duration: int = self.options.get("sleep_duration", 5)
self.request_count: int = self.options.get("request_count", 1)
self.load_type: str = "actual"
self.user_datetime_format = "%Y-%m-%d"
def _pull_data(self) -> pd.DataFrame:
"""
Pulls data from the PJM API and parses the return including date ranges.
Returns:
Raw form of data.
"""
logging.info(
f"Historical load requested from {self.start_date} to {self.end_date}"
)
start_date = datetime.strptime(self.start_date, self.user_datetime_format)
end_date = datetime.strptime(self.end_date, self.user_datetime_format).replace(
hour=23
)
days_diff = (end_date - start_date).days
logging.info(f"Expected hours for a single zone = {(days_diff + 1) * 24}")
generated_days_ranges = []
dates = pd.date_range(
start_date, end_date, freq=pd.DateOffset(days=self.query_batch_days)
)
for date in dates:
py_date = date.to_pydatetime()
date_last = (py_date + timedelta(days=self.query_batch_days - 1)).replace(
hour=23
)
date_last = min(date_last, end_date)
generated_days_ranges.append((py_date, date_last))
logging.info(
f"Generated date ranges for batch days {self.query_batch_days} are {generated_days_ranges}"
)
# Collect all historical data on yearly basis.
dfs = []
for idx, date_range in enumerate(generated_days_ranges):
start_date_str = date_range[0].strftime(self.query_datetime_format)
end_date_str = date_range[1].strftime(self.query_datetime_format)
df = pd.read_csv(
BytesIO(self._fetch_from_url("", start_date_str, end_date_str))
)
dfs.append(df)
if idx > 0 and idx % self.request_count == 0:
logging.info(f"Going to sleep for {self.sleep_duration} seconds")
time.sleep(self.sleep_duration)
df = pd.concat(dfs, sort=False)
df = df.reset_index(drop=True)
return df
def _validate_options(self) -> bool:
"""
Validates all parameters including the following examples:
- `start_date` & `end_data` must be in the correct format.
- `start_date` must be behind `end_data`.
- `start_date` must not be in the future (UTC).
Returns:
True if all looks good otherwise raises Exception.
"""
try:
start_date = datetime.strptime(self.start_date, self.user_datetime_format)
except ValueError:
raise ValueError(
f"Unable to parse Start date. Please specify in {self.user_datetime_format} format."
)
try:
end_date = datetime.strptime(self.end_date, self.user_datetime_format)
except ValueError:
raise ValueError(
f"Unable to parse End date. Please specify in {self.user_datetime_format} format."
)
if start_date > datetime.now(timezone.utc).replace(tzinfo=None) - timedelta(
days=1
):
raise ValueError("Start date can't be in future.")
if start_date > end_date:
raise ValueError("Start date can't be ahead of End date.")
if end_date > datetime.now(timezone.utc).replace(tzinfo=None) - timedelta(
days=1
):
raise ValueError("End date can't be in future.")
if self.sleep_duration < 0:
raise ValueError("Sleep duration can't be negative.")
if self.request_count < 0:
raise ValueError("Request count can't be negative.")
if self.query_batch_days < 0:
raise ValueError("Query batch days count can't be negative.")
return True
|