Bases: BaseISOSource
The MISO Daily Load ISO Source is used to read daily load data from MISO API. It supports both Actual and Forecast data.
To read more about the available reports from MISO API, download the file -
Market Reports
From the list of reports in the file, it pulls the report named
Daily Forecast and Actual Load by Local Resource Zone
.
Actual data is available for one day minus from the given date.
Forecast data is available for next 6 day (inclusive of given date).
Example
from rtdip_sdk.pipelines.sources import MISODailyLoadISOSource
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
miso_source = MISODailyLoadISOSource(
spark=spark,
options={
"load_type": "actual",
"date": "20230520",
}
)
miso_source.read_batch()
Parameters:
Name |
Type |
Description |
Default |
spark |
SparkSession
|
|
required
|
options |
dict
|
A dictionary of ISO Source specific configurations (See Attributes table below)
|
required
|
Attributes:
Name |
Type |
Description |
load_type |
str
|
Must be one of actual or forecast
|
date |
str
|
Must be in YYYYMMDD format.
|
Please check the BaseISOSource for available methods.
BaseISOSource
BaseISOSource
Bases: SourceInterface
Base class for all the ISO Sources. It provides common functionality and helps in reducing the code redundancy.
Parameters:
Name |
Type |
Description |
Default |
spark |
SparkSession
|
|
required
|
options |
dict
|
A dictionary of ISO Source specific configurations
|
required
|
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224 | class BaseISOSource(SourceInterface):
"""
Base class for all the ISO Sources. It provides common functionality and helps in reducing the code redundancy.
Parameters:
spark (SparkSession): Spark Session instance
options (dict): A dictionary of ISO Source specific configurations
"""
spark: SparkSession
options: dict
iso_url: str = "https://"
query_datetime_format: str = "%Y%m%d"
required_options: list = []
spark_schema = StructType([StructField("id", IntegerType(), True)])
default_query_timezone: str = "UTC"
def __init__(self, spark: SparkSession, options: dict) -> None:
self.spark = spark
self.options = options
self.query_timezone = pytz.timezone(
self.options.get("query_timezone", self.default_query_timezone)
)
self.current_date = datetime.now(timezone.utc).astimezone(self.query_timezone)
def _fetch_from_url(self, url_suffix: str) -> bytes:
"""
Gets data from external ISO API.
Args:
url_suffix: String to be used as suffix to iso url.
Returns:
Raw content of the data received.
"""
url = f"{self.iso_url}{url_suffix}"
logging.info(f"Requesting URL - {url}")
response = requests.get(url)
code = response.status_code
if code != 200:
raise HTTPError(
f"Unable to access URL `{url}`."
f" Received status code {code} with message {response.content}"
)
return response.content
def _get_localized_datetime(self, datetime_str: str) -> datetime:
"""
Converts string datetime into Python datetime object with configured format and timezone.
Args:
datetime_str: String to be converted into datetime.
Returns: Timezone aware datetime object.
"""
parsed_dt = datetime.strptime(datetime_str, self.query_datetime_format)
parsed_dt = parsed_dt.replace(tzinfo=self.query_timezone)
return parsed_dt
def _pull_data(self) -> pd.DataFrame:
"""
Hits the fetch_from_url method with certain parameters to get raw data from API.
All the children ISO classes must override this method and call the fetch_url method
in it.
Returns:
Raw DataFrame from API.
"""
return pd.read_csv(BytesIO(self._fetch_from_url("")))
def _prepare_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Performs all the basic transformations to prepare data for further processing.
All the children ISO classes must override this method.
Args:
df: Raw DataFrame, received from the API.
Returns:
Modified DataFrame, ready for basic use.
"""
return df
def _sanitize_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Another data transformation helper method to be called after prepare data.
Used for advance data processing such as cleaning, filtering, restructuring.
All the children ISO classes must override this method if there is any post-processing required.
Args:
df: Initial modified version of DataFrame, received after preparing the data.
Returns:
Final version of data after all the fixes and modifications.
"""
return df
def _get_data(self) -> pd.DataFrame:
"""
Entrypoint method to return the final version of DataFrame.
Returns:
Modified form of data for specific use case.
"""
df = self._pull_data()
df = self._prepare_data(df)
df = self._sanitize_data(df)
# Reorder columns to keep the data consistent
df = df[self.spark_schema.names]
return df
@staticmethod
def system_type():
return SystemType.PYSPARK
@staticmethod
def libraries():
libraries = Libraries()
return libraries
@staticmethod
def settings() -> dict:
return {}
def _validate_options(self) -> bool:
"""
Performs all the options checks. Raises exception in case of any invalid value.
Returns:
True if all checks are passed.
"""
return True
def pre_read_validation(self) -> bool:
"""
Ensures all the required options are provided and performs other validations.
Returns:
True if all checks are passed.
"""
for key in self.required_options:
if key not in self.options:
raise ValueError(f"Required option `{key}` is missing.")
return self._validate_options()
def post_read_validation(self) -> bool:
return True
def read_batch(self) -> DataFrame:
"""
Spark entrypoint, It executes the entire process of pulling, transforming & fixing data.
Returns:
Final Spark DataFrame converted from Pandas DataFrame post-execution.
"""
try:
self.pre_read_validation()
pdf = self._get_data()
pdf = _prepare_pandas_to_convert_to_spark(pdf)
# The below is to fix the compatibility issues between Pandas 2.0 and PySpark.
pd.DataFrame.iteritems = pd.DataFrame.items
df = self.spark.createDataFrame(data=pdf, schema=self.spark_schema)
return df
except Exception as e:
logging.exception(str(e))
raise e
def read_stream(self) -> DataFrame:
"""
By default, the streaming operation is not supported but child classes can override if ISO supports streaming.
Returns:
Final Spark DataFrame after all the processing.
"""
raise NotImplementedError(
f"{self.__class__.__name__} connector doesn't support stream operation."
)
|
pre_read_validation()
Ensures all the required options are provided and performs other validations.
Returns:
True if all checks are passed.
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
175
176
177
178
179
180
181
182
183
184
185
186 | def pre_read_validation(self) -> bool:
"""
Ensures all the required options are provided and performs other validations.
Returns:
True if all checks are passed.
"""
for key in self.required_options:
if key not in self.options:
raise ValueError(f"Required option `{key}` is missing.")
return self._validate_options()
|
read_batch()
Spark entrypoint, It executes the entire process of pulling, transforming & fixing data.
Returns:
Final Spark DataFrame converted from Pandas DataFrame post-execution.
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211 | def read_batch(self) -> DataFrame:
"""
Spark entrypoint, It executes the entire process of pulling, transforming & fixing data.
Returns:
Final Spark DataFrame converted from Pandas DataFrame post-execution.
"""
try:
self.pre_read_validation()
pdf = self._get_data()
pdf = _prepare_pandas_to_convert_to_spark(pdf)
# The below is to fix the compatibility issues between Pandas 2.0 and PySpark.
pd.DataFrame.iteritems = pd.DataFrame.items
df = self.spark.createDataFrame(data=pdf, schema=self.spark_schema)
return df
except Exception as e:
logging.exception(str(e))
raise e
|
read_stream()
By default, the streaming operation is not supported but child classes can override if ISO supports streaming.
Returns:
Type |
Description |
DataFrame
|
Final Spark DataFrame after all the processing.
|
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/base_iso.py
213
214
215
216
217
218
219
220
221
222
223
224 | def read_stream(self) -> DataFrame:
"""
By default, the streaming operation is not supported but child classes can override if ISO supports streaming.
Returns:
Final Spark DataFrame after all the processing.
"""
raise NotImplementedError(
f"{self.__class__.__name__} connector doesn't support stream operation."
)
|
Source code in src/sdk/python/rtdip_sdk/pipelines/sources/spark/iso/miso_daily_load_iso.py
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195 | class MISODailyLoadISOSource(BaseISOSource):
"""
The MISO Daily Load ISO Source is used to read daily load data from MISO API. It supports both Actual and Forecast data.
To read more about the available reports from MISO API, download the file -
[Market Reports](https://cdn.misoenergy.org/Market%20Reports%20Directory115139.xlsx)
From the list of reports in the file, it pulls the report named
`Daily Forecast and Actual Load by Local Resource Zone`.
Actual data is available for one day minus from the given date.
Forecast data is available for next 6 day (inclusive of given date).
Example
--------
```python
from rtdip_sdk.pipelines.sources import MISODailyLoadISOSource
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
miso_source = MISODailyLoadISOSource(
spark=spark,
options={
"load_type": "actual",
"date": "20230520",
}
)
miso_source.read_batch()
```
Parameters:
spark (SparkSession): Spark Session instance
options (dict): A dictionary of ISO Source specific configurations (See Attributes table below)
Attributes:
load_type (str): Must be one of `actual` or `forecast`
date (str): Must be in `YYYYMMDD` format.
Please check the BaseISOSource for available methods.
BaseISOSource:
::: src.sdk.python.rtdip_sdk.pipelines.sources.spark.iso.base_iso
"""
spark: SparkSession
options: dict
iso_url: str = "https://docs.misoenergy.org/marketreports/"
query_datetime_format: str = "%Y%m%d"
required_options = ["load_type", "date"]
spark_schema = MISO_SCHEMA
default_query_timezone = "US/Central"
def __init__(self, spark: SparkSession, options: dict) -> None:
super().__init__(spark, options)
self.spark = spark
self.options = options
self.load_type = self.options.get("load_type", "actual")
self.date = self.options.get("date", "").strip()
def _pull_data(self) -> pd.DataFrame:
"""
Pulls data from the MISO API and parses the Excel file.
Returns:
Raw form of data.
"""
logging.info(f"Getting {self.load_type} data for date {self.date}")
df = pd.read_excel(self._fetch_from_url(f"{self.date}_df_al.xls"), skiprows=4)
return df
def _prepare_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Creates a new `date_time` column and removes null values.
Args:
df: Raw form of data received from the API.
Returns:
Data after basic transformations.
"""
df.drop(
df.index[(df["HourEnding"] == "HourEnding") | df["MISO MTLF (MWh)"].isna()],
inplace=True,
)
df.rename(columns={"Market Day": "date"}, inplace=True)
df["date_time"] = pd.to_datetime(df["date"]) + pd.to_timedelta(
df["HourEnding"].astype(int) - 1, "h"
)
df.drop(["HourEnding", "date"], axis=1, inplace=True)
data_cols = df.columns[df.columns != "date_time"]
df[data_cols] = df[data_cols].astype(float)
df.reset_index(inplace=True, drop=True)
return df
def _sanitize_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Filter outs Actual or Forecast data based on `load_type`.
Args:
df: Data received after preparation.
Returns:
Final data either containing Actual or Forecast values.
"""
skip_col_suffix = ""
if self.load_type == "actual":
skip_col_suffix = "MTLF (MWh)"
elif self.load_type == "forecast":
skip_col_suffix = "ActualLoad (MWh)"
df = df[[x for x in df.columns if not x.endswith(skip_col_suffix)]]
df = df.dropna()
df.columns = [str(x.split(" ")[0]).upper() for x in df.columns]
rename_cols = {
"LRZ1": "Lrz1",
"LRZ2_7": "Lrz2_7",
"LRZ3_5": "Lrz3_5",
"LRZ4": "Lrz4",
"LRZ6": "Lrz6",
"LRZ8_9_10": "Lrz8_9_10",
"MISO": "Miso",
"DATE_TIME": "Datetime",
}
df = df.rename(columns=rename_cols)
return df
def _validate_options(self) -> bool:
"""
Validates the following options:
- `date` must be in the correct format.
- `load_type` must be valid.
Returns:
True if all looks good otherwise raises Exception.
"""
try:
date = self._get_localized_datetime(self.date)
except ValueError:
raise ValueError("Unable to parse Date. Please specify in YYYYMMDD format.")
if date > self.current_date:
raise ValueError("Query date can't be in future.")
valid_load_types = ["actual", "forecast"]
if self.load_type not in valid_load_types:
raise ValueError(
f"Invalid load_type `{self.load_type}` given. Supported values are {valid_load_types}."
)
return True
|