Write to Eventhub using Kafka
SparkKafkaEventhubDestination
Bases: DestinationInterface
This Spark Destination class is used to write batch or streaming data to an Eventhub using the Kafka protocol. This enables Eventhubs to be used as a destination in applications like Delta Live Tables or Databricks Serverless Jobs as the Spark Eventhubs JAR is not supported in these scenarios.
Default settings will be specified if not provided in the options
parameter:
kafka.sasl.mechanism
will be set toPLAIN
kafka.security.protocol
will be set toSASL_SSL
kafka.request.timeout.ms
will be set to60000
kafka.session.timeout.ms
will be set to60000
Example
from rtdip_sdk.pipelines.destinations import SparkKafkaEventhubDestination
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}
eventhub_destination = SparkKafkaEventhubDestination(
spark=spark,
data=df,
options={
"kafka.bootstrap.servers": "host1:port1,host2:port2"
},
connection_string="{YOUR-EVENTHUB-CONNECTION-STRING}",
consumer_group="{YOUR-EVENTHUB-CONSUMER-GROUP}",
trigger="10 seconds",
query_name="KafkaEventhubDestination",
query_wait_interval=None
)
eventhub_destination.write_stream()
OR
eventhub_destination.write_batch()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spark |
SparkSession
|
Spark Session |
required |
data |
DataFrame
|
Any columns not listed in the required schema here will be merged into a single column named "value", or ignored if "value" is an existing column |
required |
connection_string |
str
|
Eventhubs connection string is required to connect to the Eventhubs service. This must include the Eventhub name as the |
required |
options |
dict
|
A dictionary of Kafka configurations (See Attributes tables below) |
required |
consumer_group |
str
|
The Eventhub consumer group to use for the connection |
required |
trigger |
optional str
|
Frequency of the write operation. Specify "availableNow" to execute a trigger once, otherwise specify a time period such as "30 seconds", "5 minutes". Set to "0 seconds" if you do not want to use a trigger. (stream) Default is 10 seconds |
'10 seconds'
|
query_name |
optional str
|
Unique name for the query in associated SparkSession |
'KafkaEventhubDestination'
|
query_wait_interval |
optional int
|
If set, waits for the streaming query to complete before returning. (stream) Default is None |
None
|
The following are commonly used parameters that may be included in the options dict. kafka.bootstrap.servers is the only required config. A full list of configs can be found here
Attributes:
Name | Type | Description |
---|---|---|
kafka.bootstrap.servers |
A comma-separated list of hostī¸°port
|
The Kafka "bootstrap.servers" configuration. (Streaming and Batch) |
topic |
string
|
Required if there is no existing topic column in your DataFrame. Sets the topic that all rows will be written to in Kafka. (Streaming and Batch) |
includeHeaders |
bool
|
Determines whether to include the Kafka headers in the row; defaults to False. (Streaming and Batch) |
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/kafka_eventhub.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/kafka_eventhub.py
131 132 133 134 135 136 137 |
|
write_batch()
Reads batch data from Kafka.
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/kafka_eventhub.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
|
write_stream()
Reads streaming data from Kafka.
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/kafka_eventhub.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
|