Write to Eventhub
SparkEventhubDestination
Bases: DestinationInterface
This Spark destination class is used to write batch or streaming data to Eventhubs. Eventhub configurations need to be specified as options in a dictionary. Additionally, there are more optional configurations which can be found here. If using startingPosition or endingPosition make sure to check out Event Position section for more details and examples.
Examples
#Eventhub Destination for Streaming Queries
from rtdip_sdk.pipelines.destinations import SparkEventhubDestination
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}
eventhub_destination = SparkEventhubDestination(
spark=spark,
data=df,
options={
"eventhubs.connectionString": connectionString,
"eventhubs.consumerGroup": "{YOUR-EVENTHUB-CONSUMER-GROUP}",
"checkpointLocation": "/{CHECKPOINT-LOCATION}/"
},
trigger="10 seconds",
query_name="EventhubDestination",
query_wait_interval=None
)
eventhub_destination.write_stream()
#Eventhub Destination for Batch Queries
from rtdip_sdk.pipelines.destinations import SparkEventhubDestination
from rtdip_sdk.pipelines.utilities import SparkSessionUtility
# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()
connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}
eventhub_destination = SparkEventhubDestination(
spark=spark,
data=df,
options={
"eventhubs.connectionString": connectionString,
"eventhubs.consumerGroup": "{YOUR-EVENTHUB-CONSUMER-GROUP}"
},
trigger="10 seconds",
query_name="EventhubDestination",
query_wait_interval=None
)
eventhub_destination.write_batch()
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spark |
SparkSession
|
Spark Session |
required |
data |
DataFrame
|
Dataframe to be written to Eventhub |
required |
options |
dict
|
A dictionary of Eventhub configurations (See Attributes table below). All Configuration options for Eventhubs can be found here. |
required |
trigger |
optional str
|
Frequency of the write operation. Specify "availableNow" to execute a trigger once, otherwise specify a time period such as "30 seconds", "5 minutes". Set to "0 seconds" if you do not want to use a trigger. (stream) Default is 10 seconds |
'10 seconds'
|
query_name |
str
|
Unique name for the query in associated SparkSession |
'EventhubDestination'
|
query_wait_interval |
optional int
|
If set, waits for the streaming query to complete before returning. (stream) Default is None |
None
|
Attributes:
Name | Type | Description |
---|---|---|
checkpointLocation |
str
|
Path to checkpoint files. (Streaming) |
eventhubs.connectionString |
str
|
Eventhubs connection string is required to connect to the Eventhubs service. (Streaming and Batch) |
eventhubs.consumerGroup |
str
|
A consumer group is a view of an entire eventhub. Consumer groups enable multiple consuming applications to each have a separate view of the event stream, and to read the stream independently at their own pace and with their own offsets. (Streaming and Batch) |
eventhubs.startingPosition |
JSON str
|
The starting position for your Structured Streaming job. If a specific EventPosition is not set for a partition using startingPositions, then we use the EventPosition set in startingPosition. If nothing is set in either option, we will begin consuming from the end of the partition. (Streaming and Batch) |
eventhubs.endingPosition |
JSON str
|
(JSON str): The ending position of a batch query. This works the same as startingPosition. (Batch) |
maxEventsPerTrigger |
long
|
Rate limit on maximum number of events processed per trigger interval. The specified total number of events will be proportionally split across partitions of different volume. (Stream) |
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
system_type()
staticmethod
Attributes:
Name | Type | Description |
---|---|---|
SystemType |
Environment
|
Requires PYSPARK |
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
130 131 132 133 134 135 136 |
|
write_batch()
Writes batch data to Eventhubs.
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
write_stream()
Writes steaming data to Eventhubs.
Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|