Skip to content

Write to Eventhub

SparkEventhubDestination

Bases: DestinationInterface

This Spark destination class is used to write batch or streaming data to Eventhubs. Eventhub configurations need to be specified as options in a dictionary. Additionally, there are more optional configurations which can be found here. If using startingPosition or endingPosition make sure to check out Event Position section for more details and examples.

Examples

#Eventhub Destination for Streaming Queries

from rtdip_sdk.pipelines.destinations import SparkEventhubDestination
from rtdip_sdk.pipelines.utilities import SparkSessionUtility

# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()

connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}

eventhub_destination = SparkEventhubDestination(
    spark=spark,
    data=df,
    options={
        "eventhubs.connectionString": connectionString,
        "eventhubs.consumerGroup": "{YOUR-EVENTHUB-CONSUMER-GROUP}",
        "checkpointLocation": "/{CHECKPOINT-LOCATION}/"
    },
    trigger="10 seconds",
    query_name="EventhubDestination",
    query_wait_interval=None
)

eventhub_destination.write_stream()
#Eventhub Destination for Batch Queries

from rtdip_sdk.pipelines.destinations import SparkEventhubDestination
from rtdip_sdk.pipelines.utilities import SparkSessionUtility

# Not required if using Databricks
spark = SparkSessionUtility(config={}).execute()

connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}


eventhub_destination = SparkEventhubDestination(
    spark=spark,
    data=df,
    options={
        "eventhubs.connectionString": connectionString,
        "eventhubs.consumerGroup": "{YOUR-EVENTHUB-CONSUMER-GROUP}"
    },
    trigger="10 seconds",
    query_name="EventhubDestination",
    query_wait_interval=None
)

eventhub_destination.write_batch()

Parameters:

Name Type Description Default
spark SparkSession

Spark Session

required
data DataFrame

Dataframe to be written to Eventhub

required
options dict

A dictionary of Eventhub configurations (See Attributes table below). All Configuration options for Eventhubs can be found here.

required
trigger optional str

Frequency of the write operation. Specify "availableNow" to execute a trigger once, otherwise specify a time period such as "30 seconds", "5 minutes". Set to "0 seconds" if you do not want to use a trigger. (stream) Default is 10 seconds

'10 seconds'
query_name str

Unique name for the query in associated SparkSession

'EventhubDestination'
query_wait_interval optional int

If set, waits for the streaming query to complete before returning. (stream) Default is None

None

Attributes:

Name Type Description
checkpointLocation str

Path to checkpoint files. (Streaming)

eventhubs.connectionString str

Eventhubs connection string is required to connect to the Eventhubs service. (Streaming and Batch)

eventhubs.consumerGroup str

A consumer group is a view of an entire eventhub. Consumer groups enable multiple consuming applications to each have a separate view of the event stream, and to read the stream independently at their own pace and with their own offsets. (Streaming and Batch)

eventhubs.startingPosition JSON str

The starting position for your Structured Streaming job. If a specific EventPosition is not set for a partition using startingPositions, then we use the EventPosition set in startingPosition. If nothing is set in either option, we will begin consuming from the end of the partition. (Streaming and Batch)

eventhubs.endingPosition JSON str

(JSON str): The ending position of a batch query. This works the same as startingPosition. (Batch)

maxEventsPerTrigger long

Rate limit on maximum number of events processed per trigger interval. The specified total number of events will be proportionally split across partitions of different volume. (Stream)

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class SparkEventhubDestination(DestinationInterface):
    """
    This Spark destination class is used to write batch or streaming data to Eventhubs. Eventhub configurations need to be specified as options in a dictionary.
    Additionally, there are more optional configurations which can be found [here.](https://github.com/Azure/azure-event-hubs-spark/blob/master/docs/PySpark/structured-streaming-pyspark.md#event-hubs-configuration){ target="_blank" }
    If using startingPosition or endingPosition make sure to check out **Event Position** section for more details and examples.

    Examples
    --------
    ```python
    #Eventhub Destination for Streaming Queries

    from rtdip_sdk.pipelines.destinations import SparkEventhubDestination
    from rtdip_sdk.pipelines.utilities import SparkSessionUtility

    # Not required if using Databricks
    spark = SparkSessionUtility(config={}).execute()

    connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}

    eventhub_destination = SparkEventhubDestination(
        spark=spark,
        data=df,
        options={
            "eventhubs.connectionString": connectionString,
            "eventhubs.consumerGroup": "{YOUR-EVENTHUB-CONSUMER-GROUP}",
            "checkpointLocation": "/{CHECKPOINT-LOCATION}/"
        },
        trigger="10 seconds",
        query_name="EventhubDestination",
        query_wait_interval=None
    )

    eventhub_destination.write_stream()
    ```
    ```python
    #Eventhub Destination for Batch Queries

    from rtdip_sdk.pipelines.destinations import SparkEventhubDestination
    from rtdip_sdk.pipelines.utilities import SparkSessionUtility

    # Not required if using Databricks
    spark = SparkSessionUtility(config={}).execute()

    connectionString = Endpoint=sb://{NAMESPACE}.servicebus.windows.net/;SharedAccessKeyName={ACCESS_KEY_NAME};SharedAccessKey={ACCESS_KEY}=;EntityPath={EVENT_HUB_NAME}


    eventhub_destination = SparkEventhubDestination(
        spark=spark,
        data=df,
        options={
            "eventhubs.connectionString": connectionString,
            "eventhubs.consumerGroup": "{YOUR-EVENTHUB-CONSUMER-GROUP}"
        },
        trigger="10 seconds",
        query_name="EventhubDestination",
        query_wait_interval=None
    )

    eventhub_destination.write_batch()
    ```

    Parameters:
        spark (SparkSession): Spark Session
        data (DataFrame): Dataframe to be written to Eventhub
        options (dict): A dictionary of Eventhub configurations (See Attributes table below). All Configuration options for Eventhubs can be found [here.](https://github.com/Azure/azure-event-hubs-spark/blob/master/docs/PySpark/structured-streaming-pyspark.md#event-hubs-configuration){ target="_blank" }
        trigger (optional str): Frequency of the write operation. Specify "availableNow" to execute a trigger once, otherwise specify a time period such as "30 seconds", "5 minutes". Set to "0 seconds" if you do not want to use a trigger. (stream) Default is 10 seconds
        query_name (str): Unique name for the query in associated SparkSession
        query_wait_interval (optional int): If set, waits for the streaming query to complete before returning. (stream) Default is None

    Attributes:
        checkpointLocation (str): Path to checkpoint files. (Streaming)
        eventhubs.connectionString (str):  Eventhubs connection string is required to connect to the Eventhubs service. (Streaming and Batch)
        eventhubs.consumerGroup (str): A consumer group is a view of an entire eventhub. Consumer groups enable multiple consuming applications to each have a separate view of the event stream, and to read the stream independently at their own pace and with their own offsets. (Streaming and Batch)
        eventhubs.startingPosition (JSON str): The starting position for your Structured Streaming job. If a specific EventPosition is not set for a partition using startingPositions, then we use the EventPosition set in startingPosition. If nothing is set in either option, we will begin consuming from the end of the partition. (Streaming and Batch)
        eventhubs.endingPosition: (JSON str): The ending position of a batch query. This works the same as startingPosition. (Batch)
        maxEventsPerTrigger (long): Rate limit on maximum number of events processed per trigger interval. The specified total number of events will be proportionally split across partitions of different volume. (Stream)
    """

    spark: SparkSession
    data: DataFrame
    options: dict
    trigger: str
    query_name: str
    query_wait_interval: int

    def __init__(
        self,
        spark: SparkSession,
        data: DataFrame,
        options: dict,
        trigger="10 seconds",
        query_name="EventhubDestination",
        query_wait_interval: int = None,
    ) -> None:
        self.spark = spark
        self.data = data
        self.options = options
        self.trigger = trigger
        self.query_name = query_name
        self.query_wait_interval = query_wait_interval

    @staticmethod
    def system_type():
        """
        Attributes:
            SystemType (Environment): Requires PYSPARK
        """
        return SystemType.PYSPARK

    @staticmethod
    def libraries():
        spark_libraries = Libraries()
        spark_libraries.add_maven_library(get_default_package("spark_azure_eventhub"))
        return spark_libraries

    @staticmethod
    def settings() -> dict:
        return {}

    def pre_write_validation(self):
        return True

    def post_write_validation(self):
        return True

    def prepare_columns(self):
        if "body" in self.data.columns:
            if self.data.schema["body"].dataType not in [StringType(), BinaryType()]:
                try:
                    self.data.withColumn("body", col("body").cast(StringType()))
                except Exception as e:
                    raise ValueError(
                        "'body' column must be of string or binary type", e
                    )
        else:
            self.data = self.data.withColumn(
                "body",
                to_json(
                    struct(
                        [
                            col(column).alias(column)
                            for column in self.data.columns
                            if column not in ["partitionId", "partitionKey"]
                        ]
                    )
                ),
            )
        for column in self.data.schema:
            if (
                column.name in ["partitionId", "partitionKey"]
                and column.dataType != StringType()
            ):
                try:
                    self.data = self.data.withColumn(
                        column.name, col(column.name).cast(StringType())
                    )
                except Exception as e:
                    raise ValueError(f"Column {column.name} must be of string type", e)
        return self.data.select(
            [
                column
                for column in self.data.columns
                if column in ["partitionId", "partitionKey", "body"]
            ]
        )

    def write_batch(self):
        """
        Writes batch data to Eventhubs.
        """
        eventhub_connection_string = "eventhubs.connectionString"
        try:
            if eventhub_connection_string in self.options:
                sc = self.spark.sparkContext
                self.options[eventhub_connection_string] = (
                    sc._jvm.org.apache.spark.eventhubs.EventHubsUtils.encrypt(
                        self.options[eventhub_connection_string]
                    )
                )
            df = self.prepare_columns()
            return df.write.format("eventhubs").options(**self.options).save()

        except Py4JJavaError as e:
            logging.exception(e.errmsg)
            raise e
        except Exception as e:
            logging.exception(str(e))
            raise e

    def write_stream(self):
        """
        Writes steaming data to Eventhubs.
        """
        eventhub_connection_string = "eventhubs.connectionString"
        try:
            TRIGGER_OPTION = (
                {"availableNow": True}
                if self.trigger == "availableNow"
                else {"processingTime": self.trigger}
            )
            if eventhub_connection_string in self.options:
                sc = self.spark.sparkContext
                self.options[eventhub_connection_string] = (
                    sc._jvm.org.apache.spark.eventhubs.EventHubsUtils.encrypt(
                        self.options[eventhub_connection_string]
                    )
                )
            df = self.prepare_columns()
            df = self.data.select(
                [
                    column
                    for column in self.data.columns
                    if column in ["partitionId", "partitionKey", "body"]
                ]
            )
            query = (
                df.writeStream.trigger(**TRIGGER_OPTION)
                .format("eventhubs")
                .options(**self.options)
                .queryName(self.query_name)
                .start()
            )

            if self.query_wait_interval:
                while query.isActive:
                    if query.lastProgress:
                        logging.info(query.lastProgress)
                    time.sleep(self.query_wait_interval)

        except Py4JJavaError as e:
            logging.exception(e.errmsg)
            raise e
        except Exception as e:
            logging.exception(str(e))
            raise e

system_type() staticmethod

Attributes:

Name Type Description
SystemType Environment

Requires PYSPARK

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
130
131
132
133
134
135
136
@staticmethod
def system_type():
    """
    Attributes:
        SystemType (Environment): Requires PYSPARK
    """
    return SystemType.PYSPARK

write_batch()

Writes batch data to Eventhubs.

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def write_batch(self):
    """
    Writes batch data to Eventhubs.
    """
    eventhub_connection_string = "eventhubs.connectionString"
    try:
        if eventhub_connection_string in self.options:
            sc = self.spark.sparkContext
            self.options[eventhub_connection_string] = (
                sc._jvm.org.apache.spark.eventhubs.EventHubsUtils.encrypt(
                    self.options[eventhub_connection_string]
                )
            )
        df = self.prepare_columns()
        return df.write.format("eventhubs").options(**self.options).save()

    except Py4JJavaError as e:
        logging.exception(e.errmsg)
        raise e
    except Exception as e:
        logging.exception(str(e))
        raise e

write_stream()

Writes steaming data to Eventhubs.

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/eventhub.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def write_stream(self):
    """
    Writes steaming data to Eventhubs.
    """
    eventhub_connection_string = "eventhubs.connectionString"
    try:
        TRIGGER_OPTION = (
            {"availableNow": True}
            if self.trigger == "availableNow"
            else {"processingTime": self.trigger}
        )
        if eventhub_connection_string in self.options:
            sc = self.spark.sparkContext
            self.options[eventhub_connection_string] = (
                sc._jvm.org.apache.spark.eventhubs.EventHubsUtils.encrypt(
                    self.options[eventhub_connection_string]
                )
            )
        df = self.prepare_columns()
        df = self.data.select(
            [
                column
                for column in self.data.columns
                if column in ["partitionId", "partitionKey", "body"]
            ]
        )
        query = (
            df.writeStream.trigger(**TRIGGER_OPTION)
            .format("eventhubs")
            .options(**self.options)
            .queryName(self.query_name)
            .start()
        )

        if self.query_wait_interval:
            while query.isActive:
                if query.lastProgress:
                    logging.info(query.lastProgress)
                time.sleep(self.query_wait_interval)

    except Py4JJavaError as e:
        logging.exception(e.errmsg)
        raise e
    except Exception as e:
        logging.exception(str(e))
        raise e