Skip to content

Write to Delta

SparkDeltaDestination

Bases: DestinationInterface

The Spark Delta Destination is used to write data to a Delta table.

Examples

#Delta Destination for Streaming Queries

from rtdip_sdk.pipelines.destinations import SparkDeltaDestination

delta_destination = SparkDeltaDestination(
    data=df,
    options={
        "checkpointLocation": "/{CHECKPOINT-LOCATION}/"
    },
    destination="DELTA-TABLE-PATH",
    mode="append",
    trigger="10 seconds",
    query_name="DeltaDestination",
    query_wait_interval=None
)

delta_destination.write_stream()
#Delta Destination for Batch Queries

from rtdip_sdk.pipelines.destinations import SparkDeltaDestination

delta_destination = SparkDeltaDestination(
    data=df,
    options={
        "overwriteSchema": True
    },
    destination="DELTA-TABLE-PATH",
    mode="append",
    trigger="10 seconds",
    query_name="DeltaDestination",
    query_wait_interval=None
)

delta_destination.write_batch()

Parameters:

Name Type Description Default
data DataFrame

Dataframe to be written to Delta

required
options dict

Options that can be specified for a Delta Table write operation (See Attributes table below). Further information on the options is available for batch and streaming.

required
destination str

Either the name of the Hive Metastore or Unity Catalog Delta Table or the path to the Delta table

required
mode optional str

Method of writing to Delta Table - append/overwrite (batch), append/update/complete (stream). Default is append

'append'
trigger optional str

Frequency of the write operation. Specify "availableNow" to execute a trigger once, otherwise specify a time period such as "30 seconds", "5 minutes". Set to "0 seconds" if you do not want to use a trigger. (stream) Default is 10 seconds

'10 seconds'
query_name optional str

Unique name for the query in associated SparkSession. (stream) Default is DeltaDestination

'DeltaDestination'
query_wait_interval optional int

If set, waits for the streaming query to complete before returning. (stream) Default is None

None

Attributes:

Name Type Description
checkpointLocation str

Path to checkpoint files. (Streaming)

txnAppId str

A unique string that you can pass on each DataFrame write. (Batch & Streaming)

txnVersion str

A monotonically increasing number that acts as transaction version. (Batch & Streaming)

maxRecordsPerFile int str

Specify the maximum number of records to write to a single file for a Delta Lake table. (Batch)

replaceWhere str

Condition(s) for overwriting. (Batch)

partitionOverwriteMode str

When set to dynamic, overwrites all existing data in each logical partition for which the write will commit new data. Default is static. (Batch)

overwriteSchema bool str

If True, overwrites the schema as well as the table data. (Batch)

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/delta.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
class SparkDeltaDestination(DestinationInterface):
    """
    The Spark Delta Destination is used to write data to a Delta table.

    Examples
    --------
    ```python
    #Delta Destination for Streaming Queries

    from rtdip_sdk.pipelines.destinations import SparkDeltaDestination

    delta_destination = SparkDeltaDestination(
        data=df,
        options={
            "checkpointLocation": "/{CHECKPOINT-LOCATION}/"
        },
        destination="DELTA-TABLE-PATH",
        mode="append",
        trigger="10 seconds",
        query_name="DeltaDestination",
        query_wait_interval=None
    )

    delta_destination.write_stream()
    ```
    ```python
    #Delta Destination for Batch Queries

    from rtdip_sdk.pipelines.destinations import SparkDeltaDestination

    delta_destination = SparkDeltaDestination(
        data=df,
        options={
            "overwriteSchema": True
        },
        destination="DELTA-TABLE-PATH",
        mode="append",
        trigger="10 seconds",
        query_name="DeltaDestination",
        query_wait_interval=None
    )

    delta_destination.write_batch()
    ```

    Parameters:
        data (DataFrame): Dataframe to be written to Delta
        options (dict): Options that can be specified for a Delta Table write operation (See Attributes table below). Further information on the options is available for [batch](https://docs.delta.io/latest/delta-batch.html#write-to-a-table){ target="_blank" } and [streaming](https://docs.delta.io/latest/delta-streaming.html#delta-table-as-a-sink){ target="_blank" }.
        destination (str): Either the name of the Hive Metastore or Unity Catalog Delta Table **or** the path to the Delta table
        mode (optional str): Method of writing to Delta Table - append/overwrite (batch), append/update/complete (stream). Default is append
        trigger (optional str): Frequency of the write operation. Specify "availableNow" to execute a trigger once, otherwise specify a time period such as "30 seconds", "5 minutes". Set to "0 seconds" if you do not want to use a trigger. (stream) Default is 10 seconds
        query_name (optional str): Unique name for the query in associated SparkSession. (stream) Default is DeltaDestination
        query_wait_interval (optional int): If set, waits for the streaming query to complete before returning. (stream) Default is None

    Attributes:
        checkpointLocation (str): Path to checkpoint files. (Streaming)
        txnAppId (str): A unique string that you can pass on each DataFrame write. (Batch & Streaming)
        txnVersion (str): A monotonically increasing number that acts as transaction version. (Batch & Streaming)
        maxRecordsPerFile (int str): Specify the maximum number of records to write to a single file for a Delta Lake table. (Batch)
        replaceWhere (str): Condition(s) for overwriting. (Batch)
        partitionOverwriteMode (str): When set to dynamic, overwrites all existing data in each logical partition for which the write will commit new data. Default is static. (Batch)
        overwriteSchema (bool str): If True, overwrites the schema as well as the table data. (Batch)
    """

    data: DataFrame
    options: dict
    destination: str
    mode: str
    trigger: str
    query_name: str
    query_wait_interval: int

    def __init__(
        self,
        data: DataFrame,
        options: dict,
        destination: str,
        mode: str = "append",
        trigger: str = "10 seconds",
        query_name: str = "DeltaDestination",
        query_wait_interval: int = None,
    ) -> None:
        self.data = data
        self.options = options
        self.destination = destination
        self.mode = mode
        self.trigger = trigger
        self.query_name = query_name
        self.query_wait_interval = query_wait_interval

    @staticmethod
    def system_type():
        """
        Attributes:
            SystemType (Environment): Requires PYSPARK
        """
        return SystemType.PYSPARK

    @staticmethod
    def libraries():
        libraries = Libraries()
        libraries.add_maven_library(get_default_package("spark_delta_core"))
        return libraries

    @staticmethod
    def settings() -> dict:
        return {
            "spark.sql.extensions": "io.delta.sql.DeltaSparkSessionExtension",
            "spark.sql.catalog.spark_catalog": "org.apache.spark.sql.delta.catalog.DeltaCatalog",
        }

    def pre_write_validation(self):
        return True

    def post_write_validation(self):
        return True

    def write_batch(self):
        """
        Writes batch data to Delta. Most of the options provided by the Apache Spark DataFrame write API are supported for performing batch writes on tables.
        """
        try:
            if "/" in self.destination:
                return (
                    self.data.write.format("delta")
                    .mode(self.mode)
                    .options(**self.options)
                    .save(self.destination)
                )
            else:
                return (
                    self.data.write.format("delta")
                    .mode(self.mode)
                    .options(**self.options)
                    .saveAsTable(self.destination)
                )

        except Py4JJavaError as e:
            logging.exception(e.errmsg)
            raise e
        except Exception as e:
            logging.exception(str(e))
            raise e

    def write_stream(self):
        """
        Writes streaming data to Delta. Exactly-once processing is guaranteed
        """
        TRIGGER_OPTION = (
            {"availableNow": True}
            if self.trigger == "availableNow"
            else {"processingTime": self.trigger}
        )
        try:
            if "/" in self.destination:
                query = (
                    self.data.writeStream.trigger(**TRIGGER_OPTION)
                    .format("delta")
                    .queryName(self.query_name)
                    .outputMode(self.mode)
                    .options(**self.options)
                    .start(self.destination)
                )
            else:
                query = (
                    self.data.writeStream.trigger(**TRIGGER_OPTION)
                    .format("delta")
                    .queryName(self.query_name)
                    .outputMode(self.mode)
                    .options(**self.options)
                    .toTable(self.destination)
                )

            if self.query_wait_interval:
                while query.isActive:
                    if query.lastProgress:
                        logging.info(query.lastProgress)
                    time.sleep(self.query_wait_interval)

        except Py4JJavaError as e:
            logging.exception(e.errmsg)
            raise e
        except Exception as e:
            logging.exception(str(e))
            raise e

system_type() staticmethod

Attributes:

Name Type Description
SystemType Environment

Requires PYSPARK

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/delta.py
115
116
117
118
119
120
121
@staticmethod
def system_type():
    """
    Attributes:
        SystemType (Environment): Requires PYSPARK
    """
    return SystemType.PYSPARK

write_batch()

Writes batch data to Delta. Most of the options provided by the Apache Spark DataFrame write API are supported for performing batch writes on tables.

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/delta.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def write_batch(self):
    """
    Writes batch data to Delta. Most of the options provided by the Apache Spark DataFrame write API are supported for performing batch writes on tables.
    """
    try:
        if "/" in self.destination:
            return (
                self.data.write.format("delta")
                .mode(self.mode)
                .options(**self.options)
                .save(self.destination)
            )
        else:
            return (
                self.data.write.format("delta")
                .mode(self.mode)
                .options(**self.options)
                .saveAsTable(self.destination)
            )

    except Py4JJavaError as e:
        logging.exception(e.errmsg)
        raise e
    except Exception as e:
        logging.exception(str(e))
        raise e

write_stream()

Writes streaming data to Delta. Exactly-once processing is guaranteed

Source code in src/sdk/python/rtdip_sdk/pipelines/destinations/spark/delta.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def write_stream(self):
    """
    Writes streaming data to Delta. Exactly-once processing is guaranteed
    """
    TRIGGER_OPTION = (
        {"availableNow": True}
        if self.trigger == "availableNow"
        else {"processingTime": self.trigger}
    )
    try:
        if "/" in self.destination:
            query = (
                self.data.writeStream.trigger(**TRIGGER_OPTION)
                .format("delta")
                .queryName(self.query_name)
                .outputMode(self.mode)
                .options(**self.options)
                .start(self.destination)
            )
        else:
            query = (
                self.data.writeStream.trigger(**TRIGGER_OPTION)
                .format("delta")
                .queryName(self.query_name)
                .outputMode(self.mode)
                .options(**self.options)
                .toTable(self.destination)
            )

        if self.query_wait_interval:
            while query.isActive:
                if query.lastProgress:
                    logging.info(query.lastProgress)
                time.sleep(self.query_wait_interval)

    except Py4JJavaError as e:
        logging.exception(e.errmsg)
        raise e
    except Exception as e:
        logging.exception(str(e))
        raise e